1) homogeneity relation
齊性關系
2) Homogeneous linear recursion relations
齊次線性遞推關系
3) linear nonhomogeneous Recursive Relation with constant coefficients
常系數線性齊次遞推關系
4) recurrence relations of non-homogeneous linear system with constant
eoefficinet
常系數非齊次線性遞推關系
5) homogeneous linear recurrence relation
常系數齊次線性遞推關系
6) homogeneous linear recurrence relations with variable coefficients
變系數齊次線性遞推關系
1.
n this paper, tactics for seeking solution of rational homogeneous linear
recurrence relations with variable coefficients is given, it have important
meaning for analysis of computer computational algorithms.
給出了有理型變系數齊次線性遞推關系的求解策略,它對於計算機算法分析具有重要意
補充資料:遞推關系
遞推關系
recurrence relation
【補注】含有麽元素的交換環R中的元素序列“。,::,二,滿足線性遞推關系。。二pl:。一:+”‘十p。,。_。(n)m)的充分必要條件是,形式冪級數武x)=:
。+:,渾+…是一形如:(x)=夕(x)/g(x)的有理函數,甚中p(x)二l一plx一·一幾。x“而q(x)是次數簇m一1的多項式.慼鳴臯譯潘承彪校遞推關系
[reeurre理er山燈朋;PeKyPPe”T“oe cooT”o-。eH毗」,遞推公式(reeurrence lbrm口a) 形如 a。十,,=F
(n,a。,a。+!,.’‘,a。十,一)的關系式.使得儅已知序列“,,“2,…的最初p項時,就可以算出它所有的項.遞推關系的例子如:1)a,.+、=q·a。
(q轉0)‘—等比數gIJ(羅。服tric pro-『ession);2)a。十、=a。+d—等差數列(麪讓田忿-tic
Progression);3)a。十:=a。十;+a。—月加.ed數(Fi比naCei nujmbers)序列. 在遞推關系是線性的情況下(見遞歸序列
(reeur-sives閃Llence”;描述滿足已知遞推關系的所有序列的集郃的問題與解常系數齊次線性常微分方程的問題相類似.